Naive Set Theory

cardinal arithmetic and number

Def 1 We use card A to describe the comparative sizes of a set A, which is called the cardinal number of A.

Def 2 we use =, <, >, \le , \ge to descirbe the order of cardinal number, which defined by following sentences.

$$card\ A = card\ B \iff A \sim B$$
 $card\ A > card\ B \iff A \succ B$
 $card\ A < card\ B \iff A \prec B$
 $card\ A \geq card\ B \iff A \succeq B$
 $card\ A \leq card\ B \iff A \leq B$

Def 3 A,B ars disjoint sets and $card\ A=a,card\ B=b,$ then we use a+b to describe $card\ A\cup B$

Remark: If we use $C\sim A, D\sim B$, and C,D are pairwise disjoint, then $card\ C\cup D=a+b$, which means a+b is well-defined and it's independent of the choice of A,B

Prop 1

• commutative: a + b = b + a

• associative: a+(b+c)=(a+b)+c proof: use the definition of set union

Exe 1 a,b,c,d are cardinal numbers of some set. If $a\leq b,c\leq d$, then $a+c\leq b+d$

proof: assume $card\ A=a, card\ B=b, card\ C=c, card\ D=d.\ A, B, C, D\$ are all disjoint, then

$$\exists B_1 \subset B, A \sim B_1$$

$$\exists D_1 \subset D, C \sim D_1$$

for B_1,D_1 are disjoint,we have $a+c=card\ A\cup C=card\ B_1\cup D_1$, and we have $b+d=card\ B\cup D$. because $B_1\cup D_1\preceq B\cup D$, we have $a+c\leq b+d$. \square

Def 4 for $\{A_i\}$ is a correspondingly indexed family of pairwise disjoint sets such that $card\ A_i=a_i$, then

$$\sum_i a_i = card \ \cup_i \ A_i$$

Def 5 A,B ars sets and $card\ A=a,card\ B=b,$ then we use ab to describe $card\ A\times B$

Prop 2

• commutative: ab = ba

• associative: a(bc) = (ab)c

ullet multiplication distribute over addition a(b+c)=ab+ac proof: use the definition of set union and Cartesian product

Exe 2 a,b,c,d are cardinal numbers of some set. If $a \leq b,c \leq d$, then $ac \leq bd$

proof: similar to Exe1

Def 6 for $\{A_i\}$ is a correspondingly indexed family of sets such that $card\ A_i=a_i$, then

$$\prod_i a_i = card \, imes_i A_i$$

Exe 3 if $\{a_i\}, \{b_i\}, i \in I$ are families of cardinal numbers such that $a_i < b_i$ for each $i \in I$, then $\sum_i a_i < \prod_i b_i$

proof: assume that $\sum_i a_i \ge \prod_i b_i$, then for pairwize disjoint sets $A_i, B_i, card\ A_i = a_i, card\ B_i$, there exits an onto map:

$$f:\cup_i A_i o imes_i B_i$$

for $u \in imes_i B_i$, denote $\pi_i(u)$ as the i_{th} component of ${\mathsf u}$

then we have $\pi_i(f(A_i)) \subset B_i$ and by $a_i < b_i$,there exits $v_i \in B_i - \pi_i(f(A_i))$

then $imes_i\{v_i\}$ is not in $\cup_i f(A_i)$, it's contractive. \square

Def 4 for $card\ A=a, card\ B=b, a^b=card\ (A^B),$ by $A^B=\{f: f \text{ is a map from B to A}\}$

Prop 3

- $\bullet \ \ a^{b+c}=a^ba^c$
- $\bullet \ (ab)^c = a^c b^c$
- $a^{bc} = (a^b)^c$

hint: we can divide f into two parts.

Exe 4

- if a, b, c are cardinal numbers such that $a \leq b$, then $a^c \leq b^c$
- ullet if a,b are finite, greater than 1, and c is infinite, then $a^c=b^c$

proof: we refer a result cc=c then $b^c \leq c^c \leq (2^c)^c = 2^{cc} = 2^c \leq a^c$

by **Schroder Bernstein Thm.** $a^c = b^c \square$

remark: $2^c = c^c$

Prop 4

- a is finite and b is infinte, then a+b=b
- a is infinite, then a + a = a
- a,b are cardinal number at least one of which is infinite, c is the larger one, then a+b=c
- a is infinite, then aa = a

Exe 5

- if a, b are at least one of which is infinite, then a + b = ab
- ullet if a is infinite and b is finite, then $a^b=a$

Prop 5 for each set X, the ordinal numbers equivalent to X constitute a set

Def 5 card~X is an ordinal number α such that if β is an ordinal number equivalent to α , then $\alpha \leq \beta$

Thm 1 (Cantor's paradox) there is not an upper bound over all ordinal number

Exe 6 each infinite cardinal number is a limit number

Exe 7

- ullet if $card\ A=a$, what is the cardinal number of the set of all one-to-one mappings of A onto itself
- ullet what is the cardinal number if the set of all countably infinite subsets of A

remark:

- ullet continuum hypothesis: $leph_1=2^{leph_0}$
- ullet generalized continuum hypothesis: $leph_{lpha+1}=2^{leph_lpha}$, for all ordinal number lpha